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1 Expand(1 + 2x)−3 in ascending powers ofx, up to and including the term inx2, simplifying the
coefficients. [3]

2 The parametric equations of a curve are

x = t
2t + 3

, y = e−2t.

Find the gradient of the curve at the point for whicht = 0. [5]

3 The complex numberw is defined byw = 2+ i.

(i) Showing your working, expressw2 in the formx + iy, wherex andy are real. Find the modulus
of w2. [3]

(ii) Shade on an Argand diagram the region whose points representthe complex numbersß which
satisfy

|ß − w2| ≤ |w2|. [3]

4 It is given that f(x) = 4 cos23x.

(i) Find the exact value of f′(1
9π). [3]

(ii) Findã f(x)dx. [3]

5 Show thatä
7

0

2x + 7(2x + 1)(x + 2) dx = ln 50. [7]

6 The straight linel passes through the points with coordinates(−5, 3, 6) and(5, 8, 1). The planep
has equation 2x − y + 4ß = 9.

(i) Find the coordinates of the point of intersection ofl andp. [4]

(ii) Find the acute angle betweenl andp. [4]

7 (i) Given thatä
a

1

ln x

x2
dx = 2

5, show thata = 5
3(1+ ln a). [5]

(ii) Use an iteration formula based on the equationa = 5
3(1+ ln a) to find the value ofa correct to

2 decimal places. Use an initial value of 4 and give the resultof each iteration to 4 decimal
places. [3]
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8 (i) Express(√6) cosθ + (√10) sinθ in the formR cos(θ − α), whereR > 0 and 0◦ < α < 90◦. Give
the value ofα correct to 2 decimal places. [3]

(ii) Hence, in each of the following cases, find the smallest positive angleθ which satisfies the
equation

(a) (√6) cosθ + (√10) sinθ = −4, [2]

(b) (√6) cos1
2θ + (√10) sin1

2θ = 3. [4]

9 A biologist is investigating the spread of a weed in a particular region. At timet weeks after the
start of the investigation, the area covered by the weed isA m2. The biologist claims that the rate of
increase ofA is proportional to

√(2A − 5).
(i) Write down a differential equation representing the biologist’s claim. [1]

(ii) At the start of the investigation, the area covered by the weed was 7 m2 and, 10 weeks later, the
area covered was 27 m2 . Assuming that the biologist’s claim is correct, find the area covered
20 weeks after the start of the investigation. [9]

10 The polynomial p(ß) is defined by

p(ß) = ß3 + mß2 + 24ß + 32,

wherem is a constant. It is given that(ß + 2) is a factor of p(ß).
(i) Find the value ofm. [2]

(ii) Hence, showing all your working, find

(a) the three roots of the equation p(ß) = 0, [5]

(b) the six roots of the equation p(ß2) = 0. [6]
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